Discriminant Analysis as a Machine Learning Method for Revision of User Stereotypes of Information Retrieval Systems

نویسنده

  • Xiangmin Zhang
چکیده

This paper proposes to use the discriminant analysis technique as a machine learning method to adjust memberships of stereotypes, based on the user’s in-depth, task-related knowledge contained in the user models. The paper reports an empirical study on the user stereotypes of information retrieval (IR) systems. The participants were first assigned into stereotypes based on their self-reported characteristics. Their memberships in the stereotypes were then tested and predicted using the discriminant analysis, based on their IR knowledge. The pre-assigned membership and the predicted membership of each stereotype were compared. The study demonstrates that the discriminant analysis technique can be used to detect the conflicts between individual users’ knowledge and the assumption held by stereotypes that all members in a stereotype share common knowledge. The technique can be used to revise/reclassify a person’s membership of a stereotype based on the person’s knowledge. Implications and future directions of the study are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An empirical testing of user stereotypes of information retrieval systems

Stereotyping is a technique used in many information systems to represent user groups and/or to generate initial individual user models. However, there has been a lack of evidence on the accuracy of their use in representing users. We propose a formal evaluation method to test the accuracy or homogeneity of the stereotypes that are based on users explicit characteristics. Using the method, the ...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

A prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)

Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...

متن کامل

Similarity measurement for describe user images in social media

Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...

متن کامل

A prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)

Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003